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Abstract

Several engineering problems in the field of coastal and offshore engineering involve flow
interaction with porous structures such as breakwaters, sediment screens and scour protection
devices. In this paper, the interaction of waves with porous coastal structures using an open-
source computational fluid dynamics (CFD) model is presented. The fluid flow though porous
media is modelled using the Volume-averaged Reynolds-averaged Navier-Stokes (VRANS)
equations. Novel improvements to the numerical grid architecture and discretisation schemes
are made, with a staggered numerical grid for better pressure-velocity coupling and higher-
order schemes for convection and time discretisation. New interpolation schemes required for
the VRANS equations on a staggered grid are implemented. The flow problem is solved as
a two-phase problem and the free surface is captured with the level set function. The model
is validated by comparing the numerical results to experimental data for different cases such
as flow though crushed rock, solitary and regular wave interaction with a porous abutment
and wave interaction with a breakwater considering the three different porous layers. The
numerical results are also seen to be highly grid independent according to the grid convergence
study and show a significantly better agreement to experimental data in comparison to current
literature.
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1 Introduction

One of the important hydrodynamic processes in the coastal regions is the interaction of water
waves with permeable coastal structures such as breakwaters. A rubble mound breakwater
typically consists of a core layer, which is covered by filter layers to protect core material
from erosion and then the outermost armour layer. Wave interaction with such structures
has generally been investigated using model tests and empirical coefficients have then been
determined to describe the flow. Recent advances in computing power have presented a great
opportunity to obtain further insight into the hydrodynamic processes in the coastal zone
using advanced numerical modelling approaches. There are several approaches to numerical
modelling of the hydrodynamics of coastal structures, such as nonlinear shallow water equa-
tions (Kobayashi and Wurjanto, 1989; Hu et al., 2000) Boussinesqg-type equations (Madsen
et al., 1991; Fuhrman et al., 2005; Engsig-Karup et al., 2008; Liu et al., 2018), smoothed par-
ticle hydrodynamics (Shao, 2010; Gui et al., 2015; Ren et al., 2016) and Reynolds averaged
Navier-Stokes (RANS) equations (Li et al., 2004; Higuera et al., 2013; Kamath et al., 2017a)
to name a few. A large amount of progress has been achieved in the last decade in the nu-
merical modelling of wave-structure interaction based on the RANS equations. This suggests
that these models will become increasingly important for coastal engineers, as few simplifying
assumptions are made compared to other approaches. In literature, the flow through porous
media is classified based on the Reynolds number calculated based on pore size and pore
velocity into Darcy flow, Forchheimer flow, unsteady laminar and fully turbulent flow (Dybbs
and Edwards, 1984). For these different classes, different formulations are proposed for the
calculation of the flow (Darcy, 1856; Forchheimer, 1901; Polubarinova-Kochina, 1962). They
have a relatively narrow range of applicability within the flow regimes that are assumed in
the derivation of the relations and highly dependent on the associated empirical coefficients.
The challenge lies in quantifying the flow through porous media while not resolving the flow
through every single pore in the volume.

As an advance in modelling of coastal structures based on the RANS equations, a method
for analysing flow through porous breakwater layers was proposed by van Gent (1995), where
the effects of the porous medium is included through resistance coefficients. Liu et al. (1999)
implemented the same method in their work. The resistance coefficients formulated in these
works are still relevant and are relied on for the modelling of porous media in current litera-
ture. In order to account for the intrinsic flow through the randomly arranged pores, volume
averaged RANS (VRANS) equations were introduced (Hsu et al., 2002). This formulation
was later applied in two-dimensional models to evaluate wave interaction with low crested
and submerged porous structures (Garcia et al., 2004; Lara et al., 2006).

Furthermore, del Jesus et al. (2012) presented a three-dimensional VRANS model with a
new implementation of the governing equations to provide a general approach to modelling
porous media with more appropriate assumptions. The resistance terms are based on the rela-
tions between Darcy-Forchheimer coefficients and physical parameters such as grain diameter
and porosity (Engelund, 1953). Turbulence modelling for the flow through porous media is
accounted for through a volume averaged k —w SST model. A similar approach was included
in OpenFOAM by Higuera et al. (2014). Further changes to the continuity and momentum
equations were introduced by Jensen et al. (2014) for a more physically correct implementa-
tion, similar to that shown by Hsu et al. (2002). The eddy-viscosity in the porous media is
not considered as wave breaking near the structure was not expected. The validation of the
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VRANS model for irregular wave interaction with a breakwater was presented by Jacobsen
et al. (2015). The aforementioned developments in the area of porous media modelling using
RANS equations shows the relevance of the field and the scope for further research.

The modelling approaches in current literature are mostly based on a collocated unstruc-
tured grid architecture in a finite volume framework with second-order schemes for spatial and
temporal discretisation and a volume of fluids method to obtain the free surface. An novel
numerical approach to the grid architecture and discretisation schemes can improve the mod-
elling accuracy of porous coastal structures. A structured grid allows for easy implementation
of higher-order schemes which provide more accurate results. In addition, accurate calculation
of the pore pressures is essential to obtain a good representation of the fluid-porous media
interaction. This can be achieved through the use of a staggered grid that allows for better
pressure-velocity coupling. Along with the use of an immersed boundary method, complex
geometries can be modelled on a staggered structured grid. The level set method provides a
sharp interface which helps in the sharp representation of the fluid-porous media interface.
Additional interpolation schemes to account for the porous media relations between the differ-
ent interfaces between the fluid and porous media and porous media of different characteristics
are then required. With the aforementioned implementation, a consistent, numerically stable
and accurate model for porous media interaction can be built.

In the current study, wave interaction with porous media is simulated using the open-
source hydrodynamics model REEF3D (Bihs et al., 2016). The model is based on a finite
difference framework with a staggered structured numerical grid and obtains the free surface
using the level set method. The model has been previously applied to study several complex
free surface phenomena such as focussed wave forces (Bihs et al., 2017), hydrodynamics of
semi-submerged cylinders (Ong et al., 2017), water impact and entry (Kamath et al., 2017b)
and floating bodies in waves (Bihs and Kamath, 2017). The wave interaction with a imper-
vious submerged step is simulated and the wave kinematics are compared to data obtained
from experiments carried out at NTNU Trondheim. In order to validate the VRANS imple-
mentation in the model, a 2D dam break case through porous media from the experiments
carried out by Liu et al. (1999) is replicated in this study. Wave interaction with a porous
abutment is simulated using both solitary and regular waves. The numerical results for the
free surface and pore pressure are compared to the experimental data from Lara et al. (2012).
Regular wave interaction with a rubble mound breakwater with core, filter and armour layers
is simulated and the calculated pore pressures in the different layers are compared to the mea-
sured values from the experiments conducted at the hydraulic laboratory at SINTEF/NTNU
in Trondheim (Arntsen et al., 2003). The study presents a novel numerical approach to mod-
elling flow though porous media while building upon previous works by Jensen et al. (2014)
for the VRANS formulation. The current paper extends the current state-of-the-art to nu-
merical implementation on a staggered grid with the ghost cell immersed boundary method
and the level set method for the free surface to provide an improved representation of both
the free surface features and the pore pressures under wave interaction with porous coastal
structures. The robustness of the model is demonstrated through free surface and pore pres-
sure calculations in various case scenarios with porous objects of different shapes and with
multiple porous layers.
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2 Numerical Approach

2.1 VRANS equations

When modelling flow through porous media, the presence of grains and voids and their effect
on the flow is described as a resistance to the flow that dissipates energy. Darcy (1856) stated
that the flow velocity in the porous medium is proportional to the pressure gradient I as
shown in Eq. 1.

I=au/ (1)

where, a is the inverse of hydraulic conductivity K which represents the permeability of the
porous medium and w/ is the filter velocity in the z— direction. The filter velocity is the
actual pore velocity averaged over the pores and is defined in Eq. 2.

oo [ [uta 2

where A is the cross sectional area of the porous medium, u is the actual pore velocity, n
is the porosity, which can be expressed as the ratio of the pore volume to the total volume,
n= ‘/pore/v;‘/otal-

This formulation is only applicable for laminar flow where pore sizes and velocities are
small and the linear relationship is not valid when these quantities increase. In the case of flow
through coarse material, Forchheimer (1901) included friction terms and the pressure gradient
is composed of a linear term that relates to the laminar flow. Turbulent flow is included by
the non-linear term as shown in Eq. 3.

I =au/ + bu/ ‘uf‘ (3)

where a and b are dimensionless coefficients referred to as friction factors. These factors
depend on the fluid viscosity, the specific granular composition of the porous medium and
the flow regime. This means that the factors a and b are not constants for a given material
and are influenced by the Reynolds number (Re). The Forchheimer relations are empirical,
but can also be derived from the Navier-Stokes equations (Burcharth and Christensen, 1995).
These relations are valid only in the case of stationary flow and an inertia term for unsteady
flow was suggested by Polubarinova-Kochina (1962), given in Eq. 4.

I =au + bu’ ‘uf‘ + ca—ujc (4)
ot
where ¢ is also a coefficient applied in case of local accelerations. Dybbs and Edwards (1984)
identified four main flow regimes based on the Reynolds number Re = u”D,/v related to
the pore size D, and pore velocity u” shown in Table (1). By incorporating the porous
media equations into the RANS equations, different flow regimes can be evaluated without
the limitations of the individual equations discussed above.
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Table 1: Porous flow regimes

Regime Re - range Flow characteristics

Darcy flow Re<1-10 Flow dominated by viscous forces, ve-
locity distribution depends on local ge-
ometry

Forchheimer flow 1-10<Re< 150 Development of an inertial ‘core’ flow

outside the boundary layers

Unsteady laminar flow 150<Re<300 Transitional flow regime between iner-
tial, Forchheimer and fully turbulent
flow

Fully-turbulent flow 300<Re Highly unsteady and chaotic flow
regime

An illustration of the volume averaging process is provided in Fig. (1). The surface S
includes both the solid phase and the fluid phase, and creates the averaging volume with the
radius r. The total volume V remains the same while the actual volume of the fluid phase
may vary depending on the position of averaging volume. The volume averaging process is
applied with the length scale constraints defined by | < r <« L, where [ is the pore length
scale and L is the macroscopic length scale.

/S

Figure 1: Volume averaging in porous media

From current literature, it is evident that there is no unique method for volume averaging
the RANS equations to model porous media flow. In this study, Volume-averaged Reynolds-
Averaged Navier-Stokes equations (VRANS) formulation proposed by Jensen et al. (2014) is
chosen and implemented in a finite difference framework for a staggered numerical grid using
higher-order discretisation schemes. Additional interpolations required for the implementation
on such a grid architecture. For the purpose of volume averaging, the velocity at a point is
assumed to consist of an ensemble average velocity (u;) and a temporally fluctuating velocity
(u;) as shown in Eq. 5. When volume averaging is applied to an ensemble average value, it is
convenient to introduce the velocity decomposition as shown in Eq. 6 (Gray, 1975).

w = + u; (5)

”»

W = () + v (6)
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where (;)/ is the intrinsic volume averaged value and u; is the spatial fluctuation, () denotes
the volume averaged over the entire control volume including solids and (>f denotes the volume
averaged over pore volume only.

Applying the volume averaging theorem to the continuity equation together with the
assumption that the velocities on the solids being zero results in Eq. 7. Here (u;) is the
velocity averaged over the volume, called the filter velocity. The correct representation of
the continuity equation for porous media is that the divergence of the filter velocity is zero,
A (u) = 0. This keeps the filter velocity constant in the flow direction and result in a zero
flux for the velocity field when averaged over the entire volume, providing a divergence free
velocity field.

9 (u;)
81’1'

Similarly, each term is volume averaged for the momentum equations. The formulations
are based on filter velocities which are divided by the porosity to get the correct momentum
contributions as shown in Eq. 8. The use of a filter velocity in the momentum equations results
in different values for pressure gradients both inside and outside the porous media. So, the
pressure is defined as the pore pressure in the momentum equations so that the hydrostatic
pressure distribution both inside and outside are linear and identical.

Ofw) 10 () __1op) 10 (0m) 0w)
(14 Cm) ot n noxr; n p Ox; n@xjy 0 + 0x;

=0 (7)

)+gj+Fi (8)

where C), is the added mass coefficient which takes into account the grain-water interaction,
calculated as shown in Eq. 9 (van Gent, 1993).

1—n

(9)

where n is the porosity and empirical coefficient 7, =0.34, F; represents the effect of turbulence
in terms of additional resistance, which is modelled using the extended Darcy-Forchheimer
equation including linear, non-linear forces and inertial forces for local accelerations as shown
in Eq. 10.

Cm = -

Fi = —ap(w;) — bpy/ (uy) (uy) (us) (10)

where a and b are the resistance coefficients, theoretically described in Egs. 11 and 12 following
van Gent (1993).

 (1-n)? v
B 75 (1—n) 1
b=pB(1+ —Kc) B (12)

where d5( is the grain diameter and KC is the Keulegan-Carpenter number, which indicates the
stationarity of the flow as a ratio between the turbulence and inertia effects. The coefficients
«a and B depend on the Reynolds number, shape of the stones, permeability and grade of
porous material and have to be determined through experiments. A broad overview of the
values of a and 3 is given by Troch (2000), comprising of publications by various authors using
different types of materials in laminar, fully turbulent, steady and unsteady flow conditions.
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The precise description of o and [ coefficients are still not fully understood. Different values
for these coefficients have been suggested based on experiments incorporating the effect of an
oscillating flow via the KC number (van Gent, 1995; Burcharth and Christensen, 1995). It has
been generally experienced over the years that under oscillatory flow and waves propagating
over slopes or breaking, values existing in literature may not be valid anymore. In the absence
of predictive methodology to determine the values of o and 3, calibration has to be performed.

2.2 Numerical model

The VRANS equations described above are implemented in the open-source CFD model
REEF3D (Bihs et al., 2016). The accurate modelling of wave-structure interaction requires
higher order discretisation schemes and a sharp representation of the free surface. This is
accomplished with the conservative fifth-order WENO scheme (Jiang and Shu, 1996) for
discretising the convective terms in the momentum equations. The pressure is treated us-
ing Chorin’s projection method (Chorin, 1968) and the resulting Poisson pressure equa-
tion is solved using a geometric multigrid preconditioned Bi-Conjugate Gradients Stabilised
(BiCGStab) (Ashby and Falgout, 1996) available from the high-performance solver library
HYPRE (Center for Applied Scientific Computing, 2006). A staggered numerical grid is em-
ployed for better velocity-pressure coupling. This is achieved by determining the pressure and
other scalar quantities at the cell centres and the velocities are determined at the cell faces.
Turbulence is modelled with the two-equation k& —w model (Wilcox, 1994) with the transport
equations for the turbulent kinetic energy k£ and the specific turbulent dissipation rate w are
presented in Eq. (13) and (14).

ok Ok _ 9 KH%) %}+Pkﬁkk:w (13)

ot ujﬁizvjzﬁixj o) 0x;
O O _ 9 L L B
o " Yo, T o, [(”%w)axjmapk fo (14)

where Py, is the production rate and the closure coefficients o, = 2, 0, = 2, « = 5/9, 5 = 3/40
and S, = 9/100 and the eddy viscosity v; is defined in Eq. (15).

Vg = w (15)
The large strain in the flow due to wave propagation leads to unphysical overproduction
of turbulence. Eddy viscosity limiters (Durbin, 2009) are used to avoid this. In a two-
phase CFD model, the large difference in density at the interface between air and water
causes an overproduction of turbulence at the interface. Free surface turbulence damping
(Naot and Rodi, 1982) is carried out only at the interface using the Dirac delta function.
REEF3D is fully parallelised using the domain decomposition strategy and MPI (Message
Passing Interface). Time discretisation is performed with a third-order accurate total variation
diminishing (TVD) Runge-Kutta scheme (Shu and Osher, 1988). A ghost-cell immersed
boundary method based upon the local directional by Berthelsen and Faltinsen (2008) is
employed to account for the solid boundaries of the fluid domain and represent complex
geometries without explicitly specifying the boundary conditions. The fluid flow properties
at the boundaries of the porous objects are accounted for in the same manner.
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Level set method In order to obtain the free surface, the level set method (Osher and
Sethian, 1988) is used. In this method, the zero level set of a signed distance function, ¢ (Z, t)
called the level set function, represents the interface between water and air. For the rest of
the domain, the level set function represents the closest distance of each point in the domain
from the interface and the sign distinguishes the two fluids across the interface. The level set
function is defined in Eq. (16).

>0 if &isin phase 1(Water)
o(Z,t) S =0 if Tis at the inter face (16)
<0 if Zisin phase 2(Air)

The level set function is smooth across the interface and provides a sharp description of the
free surface. The values for the physical properties such as density and viscosity of the two
fluids across the interface are interpolated using a Heaviside function H(¢) over a distance of
€ = 2.1dx, where dz is the grid size, around the interface as shown in Eq.(17).

0 if ¢ < —e¢
H(¢) = %(1+%+%sm(%¢)) if || < e (17)
1 if o >e€

This smoothens the discontinuity caused by the abrupt change in the physical properties of
the fluids across the interface. The value of € = 2.1dx is chosen such that at least one cell in
each direction is included in the interpolation and the density profiles across the interface are
smooth as shown by Bihs et al. (2016). The density at the cell face is then calculated through
averaging as shown in Eq.(18).

Pyt =p1H (¢i+%) + p2 (1 - H (¢¢+%)) ; (18)

where p; and po are the densities of the two phases, air and water respectively. The values
of the fluid viscosity are interpolated in the same manner. To obtain the change in the free
surface, the level set function is convected under the velocity field in the wave tank (Eq. 19).

o¢ 9¢

o 0 (19)

Inside the porous media, the velocity field u; is replaced by the filter velocity field %
The signed distance property of the function is lost by the motion of the free surface and
it is restored by reinitialising the function after every iteration using the partial differential

equations (Peng et al., 1999).

2.3 Numerical wave tank

REEF3D can be used a numerical wave tank using the wave generation and absorption bound-
ary conditions implemented in the model. The two major methods provided for wave gener-
ation are the relaxation method (Engsig-Karup et al., 2008) and the Dirichlet-type method.
In the first method, a part of the wave tank is reserved for the purpose of wave generation
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and absorption using relaxation functions. The relaxation functions then modulate the com-
putational values with a theoretical value to either generate or absorb waves (Bihs et al.,
2016). In the Dirichlet-type method, the desired values for velocities and the free surface
elevation are directly prescribed at the inlet boundary. In this way, reserving additional zones
in the wave tank for wave generation and absorption are avoided. The current study employs
the Dirichlet-type method for wave generation and no numerical beach is used in the cases
simulated in this study. A Cartesian grid is employed in the study and dx = dy = dz in all
the simulations.

3 Results and Discussion

Several cases are presented in this paper to validate the VRANS implementation in the numer-
ical model with both two- and three-dimensional scenarios and investigate the wave-porous
structure interaction. The following sections present the numerical results from simulating the
experiments carried out by Liu et al. (1999) for dam break against a porous medium, solitary
wave interaction with a porous abutment by Lara et al. (2012), regular wave interaction with
a porous abutment by Lara et al. (2012) and regular wave interaction with a multi-layered
breakwater section by Arntsen et al. (2003) .

3.1 Dam Break

The two-dimensional study with a dam break on a porous medium made of crushed rocks
by Liu et al. (1999) is simulated. The experimental data provides the free surface evolution
both inside and outside the porous medium. In the experiments, crushed rock with a median
grain size dsg = 0.0159 m and porosity n = 0.49 is placed in the tank in the form of a porous
dam with a length of 0.29 m and a height of 0.58 m. A reservoir of water is created beside
the porous dam with a length of 0.28 m and the height of the reservoir is set to 0.35, 0.25
and 0.14 m in the different trials. The reservoir is separated from the porous dam with a 0.02
m thick gate which is operated manually. In addition, 0.025 m layer of water is allowed at
the bottom of the tank. The numerical setup is the same as the experimental setup and is
illustrated in Fig. (2). A grid size of dz = 0.005 m is used for this simulation.

The resistance coefficients o and § are calibrated by completing a simulation matrix, where
the 2 coefficients are varied as o = [500, 650, 750, 1000, 2500] and g = [1,1.5,2,2.2,3]. The
best agreement between the numerical and experimental results is found for the combination
a = 650 and g = 2.2. The simulated evolution of the flow through the porous dam is compared
to the experimental data and presented in Fig. (3). In the initial stage of the dam break, there
is a small disagreement between the experimental and numerical results especially inside the
porous medium. This is due to the difference in the initial flow in the experiments and in
the numerical model. In the experiments, the water is blocked with a gate and opening of
the gate results in water being rushed to the porous medium. The impact of the water leads
to a small upward jet on the surface of the porous medium (Liu et al., 1999). The gate is
opened manually in the experiments within a finite duration (0.1s) and the water close to the
bottom to moves earlier than the water at free surface. In the simulations, the dam break
occurs by an instantaneous release of the water column. Thus, the entire water column is set
into motion at once and explains the small difference in the calculated water surface and the
observed values at ¢ = 0.2 s and 0.4 s in Figs.(3b) and (3c) respectively.
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0.58 m

porous-medium

0.25m

water

0.025m

0.28 m 0.29m 0.302 m—mm

—_— -
0.02m

Figure 2: Dam break-setup for physical experiments

In Figs.(3d)-(3f), the flow through the porous medium is mainly due to the pressure
difference and the agreement gets better as the time progresses. Figures (3g)-(3j) represent
the situation where the water has reached the right wall and is reflected back. This reflected
wave breaks again on the porous medium and this is captured well in the numerical model.
Figure (3k)-(31) represent the period after breaking where water on the right side oscillates
a little while water from the left side is still seeping through the porous medium. The flow
regime corresponds to a transition between Forchheimer and a fully turbulent flow regime and
is very well represented by the model.

10
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Figure 3: Free surface in the simulations and experiments for flow passing through porous
dam made of crushed rock with dsg = 0.0159 m and n = 0.49 represented by a = 650 and
8=22

3.2 Wave interaction with a porous abutment

A three-dimensional scenario with the interaction of waves with a porous abutment investi-
gated by Lara et al. (2012) is simulated in this section. The domain is 18.2 m long, 8.6 m
wide and 1.0 m high. A porous structure 4.0 m long, 0.5 m wide and 0.6 m high in a water
depth d = 0.4 m is built using a metallic mesh filled with granular material. The median
particle size of the granular material dsp = 0.015 m and porosity n = 0.51. The structure is
placed perpendicular to the direction of wave propagation at a distance of 10.5 m from the
wavemaker. The numerical setup is the same in the experiments and is illustrated in Fig. (4).
As in the experiments, no beach is used in the numerical wave tank. Since the dsg and n
values in this case are similar to the values for the dam break case in the previous section, the
same values of o = 650 and 8 = 2.2 are selected for the simulations in this section as well.
A grid size of dz = 0.025 m is used in the simulation. The free surface elevation is recorded
at fifteen locations in the wave basin and pressure gauges are placed at six locations on the
porous structure. The exact positions of wave gauges and pressure gauges are listed in Table
2.

11
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location of pressure gauges
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10.5m

182m

1) wave gauge 1 1) pressure gauge 1

Figure 4: Numerical setup for porous abutment in wave basin, the location of the pressure
gauges is shown in the inset figure

Wave Gauge | © (m) | y (m) | Pressure Gauge | x (m) | y (m) | z (m)
WG1 5.0 7.0 PG1 10.5 3.89 0.11
WG2 5.0 1.0 PG2 10.5 3.69 0.25
WG3 9.5 1.0 PG3 10.89 4.0 0.11
WG4 9.5 3.0 PG4 10.69 4.0 0.25
WGH 10.0 4.0 PG5 11.0 3.70 0.11
WG6 11.0 4.5 PG6 11.0 3.9 0.25
WGT7 11.5 3.5
WGS 12.5 2.5
WG9 12.0 1.5
WG10 11.5 0.5
WG11 13.0 0.5
WG12 13.5 4.0
WGI13 15.0 2.0
WG14 12.5 7.0
WG15 9.5 7.5

Table 2: Location of the wave and pressure gauges in the numerical wave tank

Solitary wave interaction with a porous abutment First, the interaction of a solitary
wave of height H = 0.09 m with the porous abutment is simulated. In the absence of a
beach, the solitary wave is reflected from the end of the domain and propagates towards
the wavemaker, interacting with the porous structure for a second time. The free surface
elevations calculated numerically at the different locations listed in Table (2) are compared
to the experimental results in Fig. (5). In Fig. (5a) the incident wave propagating towards
the end of the domain and the reflected wave travelling towards the wavemaker at WG1 are

12
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Figure 5: Numerical and experimental results (Lara et al., 2012) for the free surface elevation
for solitary wave interaction with a porous abutment

seen at at t = 4 s and ¢ = 15 s respectively. The free surface elevation at WG2 in Fig. (5b)
shows the incident wave, the partially reflected wave from the structure and the reflected
wave from the end of the domain after interacting with the porous abutment. WG3 and
WG4 in Figs. (5¢) and (5d) respectively show a secondary crest beside the primary crest as
they are placed just 1 m from the face of the porous abutment and are quickly affected by
the partially reflected wave. The reflected waves from the end of the domain are partially
transmitted and seen as the smaller peaks around ¢t = 15 s. Wave gages WGH, WG6 and WG7
are placed around the seaward edge of the porous structure. The reduction of the incident
wave height as it crosses the structure is apparent in the visual comparison of the first peaks
in Fig. (5e) and (5g) corresponding to WG5H and WGT respectively. Figures (5h)-(5k) present
the free surface elevations at WG8-WG11 respectively which are on the leeward side of the
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porous abutment. The wave crest calculated at these locations correspond to the incident
wave that is damped by the porous structure. The second crest calculated at these locations
corresponds to the reflected wave from the end of the domain. WG12 is located 2.5 m behind
the seaward edge of the abutment and the incident wave consists of the unaffected part of
the wave and the part transmitted through the abutment. In addition, WG12 is also fully
exposed to the reflected wave from the end of the domain as seen in Fig. (51). The free surface
elevation 3 m behind the structure at WG13 in Fig. (5m) shows a damped incident wave after
interaction with the structure, the reflected wave from the end of the domain followed by the
partially re-reflected waves from the structure. The locations WG14 and WG15 are exposed
to a mostly undisturbed incident and the reflected waves along with some radiated waves from
the structure as seen in Fig. (5n) and (50) respectively. The numerical results agree well with
the experimental results both in phase and amplitude of the incident and reflected waves at
the different locations.

A grid convergence study is carried out by repeating the simulation with grid sizes dx =
0.03 m, dr = 0.05 m and 0.075 m. The numerical results for the free surface elevation at
locations WG2 and WG13 are presented in Fig. (6). The two wave gauges are located on either
side of the abutment and receive most of the wave action from both incident and reflected
waves. It is seen that the free surface elevations for both WG2 and WG13 in Figs. (6a)
and (6b) are similar for all the grid sizes used and exactly the same for doz = 0.03 m and
dxr = 0.025 m. Thus, the results presented using dr = 0.025 m are grid independent. In
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Figure 6: Grid convergence study for solitary wave interaction with the porous abutment

order to demonstrate the improved numerical results obtained with the current approach, a
comparison with the numerical results from Lara et al. (2012) for the free surface elevation
around the porous structure is presented along with the experimental data in Fig. (7). It seen
that the the reflected wave at WGT is better represented in the current model in Fig. (7a). The
free surface elevations at WG10 in Fig. (7b) are similar in the current work and previously
presented numerical results. At the most onshore location behind the porous abutment,
WG13, the current model provides a better representation of both the amplitude and phases of
the wave crests in Fig. (7c). At WG15 in Fig. (7d), the current model shows better agreement
with the experimental data compared to previous numerical results. The pressure calculated
at the six different locations in the porous abutment are compared to the experimental data
in Fig. (8). Three distinct peaks are seen in each of the figures due to the incident wave,
the transmitted wave and the reflected wave. PG1 and PG2 are placed on the seaward side
and the highest peaks are seen to occur when the solitary wave is incident on the abutment
in Figs. (8a) and (8b). The pressures inside the abutment measured at PG3 and PG4 are
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Figure 7: Comparison numerical results with the current approach with numerical results
from Lara et al. (2012) and experimental data for solitary wave interaction with a porous

abutment

presented in Figs. (8c) and (8d) respectively and the three peaks are seen to be of comparably
similar magnitudes. On the leeward side at PG5 and PG6, the highest peaks result from
the wave reflected from the end of the domain as seen in Figs. (8¢) and (8f). The numerical
results show a good agreement with experimental data for the measured pressures as well.
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Figure 8: Numerical and experimental (Lara et al., 2012) pressure in the structure for solitary

wave interaction with a porous abutment

The interaction of the solitary wave with the porous abutment in the numerical wave tank
is presented in Fig. 9. The solitary wave approaching the porous abutment at t = 5.0 s is
shown in Fig. (9a). At ¢ = 6.5 s, the incident wavefront is separated by the abutment and
the transmitted wave in the unblocked region is seen in Fig. (9b). Figure (9c) shows the
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wave transmitted through and beyond the abutment approach the end of the domain and the
first partially reflected wave from the abutment travelling towards the wavemaker at t = 9.0
s. The transmitted wave is reflected back towards the abutment at ¢ = 10.0 s in Fig. (9d).
The wave reflected from the end of the domain interacts with the porous abutment again
at t = 13.5 s in Fig. (9e). Here, the wavefront is separated by the abutment for the second
time resulting in transmitted waves through and beyond the abutment along with a second
partially reflected wave. The first partially reflected wave is re-reflected from the wavemaker
and reaches the abutment at ¢ = 16.5 s, while the second partially reflected wave is near the
end of the domain in Fig. (9f). The interaction processes presented in this figure can be easily
identified with the different peaks observed at the different locations in Fig. (5).
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Figure 9: Free surface elevation in the numerical wave tank for solitary wave interaction with
a porous abutment

In order to demonstrate the satisfaction of the continuity at the interface between the
water and the porous media, the pressure and horizontal velocity time series on either side of
the weather side boundary of the porous abutment at PG8 (10.49, 3.90, 0.25) and PG9 (10.51,
3.90, 0.25) are presented in Fig. (10). It is seen that the computed pressures and velocities
across the boundary are the same and the continuity condition is satisfied. In addition, the
horizontal velocity profiles over the water depth far from the abutment (z = 10.0m), just in
front of the abutment (z = 10.49 m), just inside the abutment (z = 10.51 m) and at the
centre of the abutment (z = 10.75 m), close to the head of the abutment at y = 3.90 m ,
middle of the abutment at ¥ = 2.00 m and close to the wall at y = 0.50 m at ¢ = 6.75 s are
presented in Fig. (11). The solitary wave crest is incident on the porous abutment at this
instance in the simulation. The horizontal velocity profile shows the highest amplitude at the
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far field location at x = 10.0 m in Fig. (11a), due to the fact that this location is closer to
the head of the abutment and experiences the least resistance to the flow. The horizontal
velocity profiles at = 10.0 m are identical for y = 2.0 m and y = 0.50 m in Figs. (11b) and
(11c) respectively. Also, it is seen that the maximum horizontal velocity is damped as wave
travels from the far field location at x = 10.0 m towards the centre of the porous abutment

at z = 10.75 m at all three locations along the length of the porous abutment.
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Figure 10: Numerical results for the pressure and horizontal velocity on either side of the
porous interface at PG8 and PG9 for solitary wave interaction with a porous abutment
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Figure 11: Horizontal velocity profiles over the water depth outside and inside the porous
abutment for an incident solitary wave at various x— locations for different locations along
the porous abutment

Regular wave interaction with a porous abutment The interaction of the porous
abutment with waves is further studied with periodic waves in the numerical wave tank. As
in the experiments by Lara et al. (2012), waves of period 7" = 4.0 s and height H = 0.09 m
are generated using cnoidal wave theory. The values for the grid size dz = 0.025 m and the
porous media resistance coefficients e = 650 and 8 = 2.2 are retained from the solitary wave
simulation above. The free surface elevations calculated at the different locations listed in
Table (2) are compared with the experimental results from Lara et al. (2012) in Fig. (12). The
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Figure 12: Numerical and experimental results (Lara et al., 2012) for the free surface elevation
regular wave (H = 0.09 m, 7' = 4.0 s ) interaction with a porous abutment

present scenario with regular waves involves more interactions compared to the solitary wave
scenario due to the periodic nature of the incident waves. First, the wave is partially reflected
and transmitted through and beyond the abutment. The transmitted wave is reflected from
the end of the domain and interacts with the following wave. This transformed wave then
interacts with the abutment again, resulting in further transmission towards the wavemaker
and partial reflection towards the end of the domain. This process repeats itself over the course
of the simulation resulting in complex wave patterns. At locations close to the abutment on
the upstream side, several peaks in the wave crests are observed like in Figs. (12b), (12¢)
and (12d). At locations on the leeside of the abutment, cancellation of the transmitted and
reflected waves result in periods of near-zero elevations as seen in Figs. (12h), (12i), (12j) and
(12k). The complex wave-wave and wave-structure interactions are well accounted for in the
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model and the numerical results are seen to be in good agreement with the experimental data
at all locations.

A grid convergence study is carried out by repeating the simulation with grid sizes dx =
0.03 m, dr = 0.05 m and 0.075 m. The numerical results for the free surface elevation at
locations WG2 and WG13 are presented in Fig. (13). The two wave gauges are located on
either side of the abutment and placed such that they receive most of the wave action from
both incident and reflected waves. It is seen that the free surface elevations for both WG2
and WG13 in Figs. (13a) and (13b) are similar for all the grid sizes used and exactly the same
for dr = 0.03 m and dz = 0.025 m. Thus, the results presented using dr = 0.025 m are grid
independent. The numerical results for the free surface elevation at selected locations around
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Figure 13: Grid convergence study for periodic wave interaction with the porous abutment

the porous abutment using the current model are compared with the numerical results from
Lara et al. (2012) along with the experimental results in Fig. (14). The free surface elevations
at WGT in Fig. (14a) show that the current approach agrees better with the experimental
data whereas spurious wave crests are seen in the previous numerical results. At WGI10 in
Fig. (14b), the current model represents every wave crest right behind the porous abutment,
where both transmitted wave through the porous abutment and the reflected wave from
the end of the domain are seen. A change in phase and amplitude, with spurious crests
is seen at WG13 in the previous numerical results, whereas the current model follows the
experimental observations in Fig. (14c). At WGI15 in Fig. (14d), the current results show
good agreement with the experimental data whereas previous results show an increase in the
wave crest elevation over time. The pressures calculated at the six different locations in the
porous abutment listed in Table (2) are compared with the experimental results in Fig. (15).
The largest pressures are measured on the upstream side of the abutment at PG1 and PG2
shown in Fig. (15a) and (15b). The pressures are slightly reduced inside the abutment as seen
in Fig. (15¢) and (15d). On the leeside of the abutment, the pressures are initially small and
increase when the reflected waves from the end of the domain are incident on the abutment
in Fig. (15e) and (15f). The numerical results are seen to agree well with the experimental
data in both phase and amplitude, showing that the model represents the physics involved in
the flow through porous media well.

The periodic wave interaction with the porous abutment in the numerical wave tank is
presented in Fig. 16, following the propagation of the second wave crest along the wave tank.
The incidence of the second wave crest on the porous abutment at ¢ = 9.5 s with the partially
reflected wave and the transmitted wave is shown in Fig. (16a). At ¢ = 10.0 s, the partially
reflected wave is travelling towards the wavemaker and the transmitted wave is propagating
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Figure 14: Comparison of numerical results with the current approach with numerical results
from Lara et al. (2012) and experimental data for solitary wave interaction with a porous
abutment
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Figure 15: Numerical and experimental (Lara et al., 2012) pressure in the structure for regular

wave interaction with a porous abutment

towards the end of the domain in Fig. (16b).

Figure (16¢) shows the interaction of the

partially reflected wave with the next wave crest upstream of the abutment at ¢t = 11.0 s.
The transmitted wave interacts with the crest of the first wave crest reflected from the end of
the domain downstream of the abutment in Fig. (16d)at ¢ = 11.5 s. The third wave crest is
incident on the abutment at ¢ = 12.5 s in Fig. (16e). Here the part of the wavefront towards
the landfast side of the abutment is slightly damped due to its interaction with the partially
reflected wave. The first wave crest reflected from the end of the domain is incident on the lee
side of the abutment while the second crest is at the end of the domain. Figure (16f) shows
the incidence of the third wave crest on the abutment, while the second wave crest travels
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Figure 16: Free surface elevation in the numerical wave tank for periodic wave (H = 0.09 m,
T = 4.0 s) interaction with a porous abutment

towards the abutment after reflecting from the end of the domain at ¢ = 13.5 s. The interaction
processes presented in this figure show the additional complexities in the hydrodynamics due
to the periodic waves in comparison to the solitary waves and the processes visualised in this
figure can be correlated to the wave elevations at the different locations discussed in Fig. (12).

3.3 Wave interaction with a rubble mound breakwater

In this section, a rubble mound breakwater is simulated considering the porous media flow
through the armour, filter and core layers in a two-dimensional numerical wave tank. The
numerical results for the pore pressure are compared to the data from the experiments con-
ducted at the SINTEF/NTNU Trondheim hydraulic laboratory by Arntsen et al. (2003). The
rubble mound breakwater model has a front slope of 1 :1.25, 3 m long and a crest height of
1.1 m. The core is made of well-graded sand with dsg = 0.0028 m and porosity n = 0.414.
The filter layer is 0.10 m thick and made of gravel with d,,50 = 0.02 m and porosity n = 0.33.
The armour layer is composed of one layer of stones with median weight W5 of about 1 kg.
The median particle size is d,50 = 0.07 m and the porosity is n = 0.30. Inside the breakwa-
ter, pressure cells are installed to measure the pore pressure variations. The rubble mound
breakwater model is illustrated in Fig. (17) along with the position of the pressure cells inside
the breakwater. The locations of the pressure cells used in the experiments are listed in Table
(3). Pore pressure cells P1 and P5 are placed at the boundary between the armour and the
filter layers. P2 and P6 are placed at the boundary between the filter and the core layers.
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P3, P4, P7 and P8 are placed in the core. The pressure cells P1, P2, P3, P4 are placed along
z = 0.25 m above the bottom of the wave tank, and the pressure cells P5, P6, P7 and P8
are placed at a higher elevation of z = 0.45 m above the bottom of the tank. This provides
further insight into the wave-porous structure interaction problem. Also, these measurements
provide crucial data to validate the model for porous media flow through complex geometry.
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Figure 17: Tlustration of the rubble mound breakwater model with three layers and the
location of the pressure probes

Table 3: Position of pressure cells inside the rubble mound breakwater
Cell | PG1 | PG2 | PG3 | PG4 | PG5 | PG6 | PG7 | PG8

z (m) | 7.45 | 7.525 | 7.90 | 8.20 | 7.70 | 7.78 | 7.90 | 8.20
z(m) | 0.25 | 0.25 | 0.25 | 0.25 | 0.45 | 0.45 | 0.45 | 0.45

The simulations are carried out in a numerical wave tank that is 12 m long and 1.4 m high
with a grid size of dz = 0.005 m. The toe of the breakwater is placed £ = 7 m away from
the wave generation boundary (Fig.18). The resistance coefficients o and /3 are defined based
on the calibrated values from the previous sections and from literature (Troch, 2000). The
material characteristics and the resistance coeflicients of the different layers of the breakwater
are presented in Table 4. Regular waves with H = 0.22 m, T' = 1.5 s are generated using the
5th-order Stokes theory in a water depth d = 0.7 m.

o 2 4 6 8 10 12

Figure 18: Setup for Rubble mound breakwater in the NWT
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Table 4: Resistance coeflicients for different layers in the breakwater
Layer | dso(m) | n () | () |B(-)

Armour | 0.0596 0.3 100 1.1
Filter 0.02 0.33 | 600 1.1
Core 0.0028 | 0.414 | 50 2

The pore pressures calculated in the simulations at the locations listed in Table (3) are
compared with the pore pressures measured at these locations in the experiments in Fig. (19).
The peak pore pressures at z = 0.25 m above the bottom of the tank are as follows. At location
P1, the boundary between the armour and filter layers, the peak pore pressure is calculated to
be 525 Pa, while a pressure of 460 Pa is measured in the experiments with an overestimation
of 14% as shown in Fig. (19a). At location P2, the boundary between the filter and core layers
at z = 0.45 m in Fig. (19b), the numerical and measured values for the peak pore pressure are
seen to be 470 Pa and 500 Pa respectively. The numerical model overestimates the peak pore
pressure by about 6%. The deviations at these locations can be attricbuted to the averaged
bulk representation of the porous resistance in the model compared to the instantaneous
measurements. In addition, the locations are the boundary between two different porous
layers and the numerical values for pressure are further averaged depending on the porous
resistance in each of the neighbouring cells. Inside the core layer, at locations P3 and P4 in
Figs. (19¢) and (19d), the difference in the numerical results and the measurements is about
7% and 3% respectively. The following observations are made for the peak pore pressures at
the locations closer to the free surface at z = 0.45 m. The numerically calculated peak pore
pressure at location P5 at the boundary between the armour and filter layers is 530 Pa, and
is within 1% of the measured values as seen in Fig. (19e). At the boundary between the filter
and core layers at location P6 in Fig. (19f), the numerical peak pore pressure is 520 Pa and
within 2% of the measured values. In the core layer at locations P7 and P8 in Figs. (19g) and
(19h), values for the numerical peak pore pressure are 470 Pa and 420 Pa respectively. The
numerical values are within 1% of the measurements. Overall, the numerical model calculates
the pore pressures at the different locations with good accuracy. The maximum deviation
between the measurements and the numerical calculations are of the order of the pressure
exerted by water in one grid cell, that is 0.005 m.

The wave interaction with the porous rubble mound breakwater over half a wave period
is presented in Fig. (20). The wave crest approaching the breakwater is shown in Fig. (20a).
The wave crest impacts the armour layer in Fig. (20b) and the truncation of the wave crest
due to the dissipation of a part of the incident wave energy is seen. The wave run up on the
breakwater and the seepage into the breakwater is seen in Fig. (20c) and the process of wave
run down begins in Fig. (20d). The effect of the porosity imposed by the VRANS formulation
to represent the flow through three different porous layers of the breakwater is clearly seen
from the velocity contours in Fig. (20). The reduction of the velocity contours and the lower
values of the pore pressures measured in the core layer demonstrate that most of the wave
energy is dissipated within the armour and filter layers of the breakwater and a small amount
of flow seeps into the core layer.
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Figure 19: Comparison of pressure measurements for pressure gauges inside rubble mound
breakwater for regular waves. Red lines indicate numerical model results and black lines
represent experimental results

4 Conclusion

The open-source CFD model REEF3D is validated for the wave-porous structure interactions
with the newly implemented VRANS method. A brief overview of the derivation of the
VRANS equations is presented based on the formulations derived by Jensen et al. (2014). The
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Figure 20: Wave interaction with a rubble mound breakwater simulated with three porous
layers

model uses higher-order schemes for convection and temporal discretisation on a Cartesian
grid along with the level set method for the free surface.

The numerical model is validated with two- and three-dimensional simulations for different
flow conditions. The flow through a porous medium made of crushed rock is calculated and
the free surface evolution is compared to the experimental data from Liu et al. (1999) in a
2D simulation. The numerical results agree with the experimental observations after the first
0.4 s due to the small difference in the dam break mechanism. The interaction of solitary and
regular waves with a uniform porous abutment is studied in three-dimensional simulations.
The numerical results for the free surface at various locations in the wave tank and the pore
pressures at different locations in the porous abutment are compared with experimental data
from Lara et al. (2012) and a good agreement is seen for both cases. As the properties of the
porous medium are the same for the dam break scenario and the porous abutment, the same
resistance coefficients are used in the three simulations. The numerical results consistently
match the experimental observations, demonstrating the reliability of the numerical model in
the prediction of flow through porous media. The current results show a significantly better
agreement to the experimental data for solitary and regular wave interaction with a porous
abutment compared to numerical results in current literature.

The numerical model is then used to simulate wave interaction with a rubble mound
breakwater with three layers with different material properties. The measured pore pressures
in the different layers by Arntsen et al. (2003) are compared to the numerical results. The
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difference between the numerically calculated pore pressures and the measured values at all
the locations closer to the crest of the breakwater is within 1%. A difference of 14% is seen
at the boundary between the armour and filter layers at the location closer to the bed. This
corresponds to the pressure due to a water height of 0.005 m. At other locations closer to the
bed, the pressure values are within 7%of the measurements. The dissipation of the incident
wave energy by the rubble mound breakwater with three porous layers is well represented by
the numerical model. Overall, the numerical model demonstrates that it can reliably predict
the flow through porous media and represent the fluid-structure interaction in a physical
manner.
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